Math 30-1: Transformations and Operations PRACTICE EXAM

1. If the graph of $f(x)$ undergoes the transformation $y=f\left(\frac{1}{5} x\right)$, a point that exists on the graph of the image is:
A. $\left(\frac{1}{5}, 4\right)$
B. $(2,1)$
C. $(-5,5)$

D. $(6,0)$
2. If the graph of $f(x)$ undergoes the transformation $x=f(y)$, an invariant point is:
A. $(7,1)$
B. $(3,-3)$
C. $(5,5)$
D. $(3,1)$

3. If the graph of $f(x)$ undergoes the transformation $y-4=f(x)$, then the range of the image is:
A. $\{y \mid-6 \leq y \leq-1, y \in R\}$
B. $\{y \mid 2 \leq y \leq 7, y \varepsilon R\}$
C. $[-6,-1]$
D. $(2,7)$

4. If the graph of $f(x)$ is horizontally translated 6 units left, then the corresponding transformation equation and mapping are:
A. Transformation Equation: $y=f(x-6)$;

Mapping: $(x, y) \rightarrow(x-6, y)$
B. Transformation Equation: $y=f(x-6)$;

Mapping: $(x, y) \rightarrow(x+6, y)$
C. Transformation Equation: $y=f(x+6)$;
 Mapping: $(x, y) \rightarrow(x-6, y)$
D. Transformation Equation: $y=f(x+6)$;

Mapping: $(x, y) \rightarrow(x+6, y)$
5. If $f(x)$ (dashed line ---) is transformed to the image (solid line -), then the corresponding transformation equation and mapping are:
A. Transformation Equation: $y=f\left(\frac{1}{2} x\right)$;
Mapping: $(x, y) \rightarrow(2 x, y)$
B. Transformation Equation: $y=f\left(\frac{1}{2} x\right)$;

Mapping: $(x, y) \rightarrow\left(\frac{1}{2} x, y\right)$

C. Transformation Equation: $y=f(2 x)$;

Mapping: $(x, y) \rightarrow(2 x, y)$
D. Transformation Equation: $y=f(2 x)$;

Mapping: $(x, y) \rightarrow\left(\frac{1}{2} x, y\right)$
6. If the graph of $f(x)=x^{2}+1$ is transformed by $g(x)=f(2 x)$, then the function of the image is:
A. $g(x)=4 x^{2}+1$
B. $g(x)=2 x^{2}+1$
C. $g(x)=2 x^{2}+2$
D. $g(x)=2 x+1$
7. If the graph of $f(x)=x^{2}-4$ is transformed by $g(x)=f(x)-4$, then the function of the image is:
A. $g(x)=x^{2}-8$
B. $g(x)=x^{2}$
C. $g(x)=(x-4)^{2}-4$
D. $g(x)=(x+4)^{2}-4$
8. If the graph of $f(x)=(x+2)^{2}$ is horizontally translated so it passes through the point $(6,9)$, the transformation equation is:
A. $y=f(x-5)$
B. $y=f(x-11)$
C. Neither $y=f(x-5)$ nor $y=f(x-11)$.
D. Both $y=f(x-5)$ and $y=f(x-11)$.

9. Sam sells bread at a farmers' market for $\$ 5.00$ per loaf. It costs $\$ 150$ to rent a table for one day at the farmers' market, and each loaf of bread costs $\$ 2.00$ to produce. The cost (expenses) and revenue functions are:

$$
\begin{aligned}
& C(n)=2 n+150 \\
& R(n)=5 n
\end{aligned}
$$

If the cost of renting a table increases by $\$ 50 /$ day, and Sam raises the price of a loaf by 20%, then the new cost and revenue functions are:
A. $C_{2}(n)=2 n+200$ and $R_{2}(n)=n$
B. $C_{2}(n)=2.4 n+200$ and $R_{2}(n)=6 n$

C. $C_{2}(n)=2(n-50)+150$ and $R_{2}(n)=5.2 n$
D. $C_{2}(n)=2 n+200$ and $R_{2}(n)=6 n$
10. A basketball player throws a basketball. The path can be modeled with the function:

$$
h(d)=-\frac{1}{9}(d-4)^{2}+4
$$

If the player moves so the equation of the shot is $h(d)=-\frac{1}{9}(d+1)^{2}+4$, the horizontal distance of the player from the hoop is:
A. 1 metre
B. 3 metres
C. 8 metres
D. 12 metres
11. The transformation $y=-3 f[-4(x-1)]+2$ is best described (sequentially) as:
A. Translations 1 unit left and 2 units up; reflections about both the x - and y-axis; a vertical stretch by a scale factor of 3 and a horizontal stretch by a scale factor of 4 .
B. Translations 1 unit right and 2 units up; reflections about both the x - and y-axis; a vertical stretch by a scale factor of 3 and a horizontal stretch by a scale factor of 1/4.
C. Reflections about both the x - and y-axis; a vertical stretch by a scale factor of $1 / 3$ and a horizontal stretch by a scale factor of 4; and translations 1 unit right and 2 units up.
D. A vertical stretch by a scale factor of 3 and a horizontal stretch by a scale factor of 1/4; reflections about both the x - and y -axis; and translations 1 unit right and 2 units up.
12. If the graph of $f(x)$ undergoes the transformation $y=f\left[\frac{1}{3}(x-1)\right]+1$, the domain and range of the image are:
A. D: [-2, 7]; R: [2, 4]
B. D: $(-2,7)$; $\mathrm{R}:(2,4)$
C. $D:\{x \mid 2 \leq x \leq 4, x \in R\} ; R:\{y \mid-2 \leq y \leq 7, y \varepsilon R\}$
D. D: $\{x \mid 2<x<4, x \in R\} ; R:\{y \mid-2<y<7, y \varepsilon R\}$

13. If the graph of $f(x)$ undergoes the transformation $y=f(2 x+6)$, the horizontal translation is:
A. 2 units left.
B. 3 units left.
C. 6 units left.
D. 12 units left.

14. If the point $(2,0)$ exists on the graph of $y=f(x)$, what are the coordinates of the image point after the transformation $y=f(-2 x+4)$ is applied to the graph?
A. $(-3,0)$
B. $(-1,0)$
C. $(0,0)$
D. $(1,0)$
15. The graph of $y=f(x)$ is horizontally stretched by a factor of $\frac{1}{3}$, reflected about the x-axis, and translated 2 units left. The corresponding transformation equation and mapping are:
A. Transformation Equation: $y=f[-3 x+2]$;

Mapping: $(x, y) \rightarrow\left(-\frac{1}{3} x-2, y\right)$
B. Transformation Equation: $y=-f[3 x+2]$;

Mapping: $(x, y) \rightarrow\left(\frac{1}{3} x-2,-y\right)$
C. Transformation Equation: $\mathrm{y}=\mathrm{f}[-3(\mathrm{x}+2)]$;

Mapping: $(x, y) \rightarrow\left(-\frac{1}{3} x-2, y\right)$
D. Transformation Equation: $y=-f[3(x+2)]$;

Mapping: $(x, y) \rightarrow\left(\frac{1}{3} x-2,-y\right)$
16. The general transformation equation $y=a f[b(x-h)]+k$ can be expressed as the mapping:

$$
(x, y) \rightarrow\left(\frac{1}{b} x+h, a y+k\right)
$$

Based on the mapping, one can conclude that:

Legend for Questions 16 and 17.

VS - Vertical Stretch
VR - Reflection About the x-axis
VT - Vertical Translation
HS - Horizontal Stretch
HR - Reflection About the y-axis
HT - Horizontal Translation
A. Transformations are axis-independent.

The transformation sequence [VS - VR - VT - HS - HR - HT] is correct because all vertical transformations are grouped together and all horizontal transformations are grouped together.
B. Stretches and reflections must universally be applied before translations.

The transformation sequence [VS - VR - VT - HS - HR - HT] is incorrect because a vertical translation is applied before a horizontal stretch.
C. Stretches and reflections can be applied in either order since the negative sign is included in the a and b parameters. The transformation sequence [VR - VS - VT - HR - HS - HT] is correct.
D. Both A and C are correct.
17. The goal of the video game Space Rocks is to pilot a spaceship through an asteroid field without colliding with any of the asteroids.

The spaceship acquires two power-ups. The first power-up halves the original width of the spaceship, making it easier to dodge asteroids. The second power-up is a left wing cannon.

What transformation describes the spaceship's new size and position and dodges the asteroids?

Original position of ship
 \bigvee Final position of ship

A. VR; $\mathrm{VT}=7$ down; $\mathrm{HR} ; \mathrm{HS}=1 / 2 ; \mathrm{HT}=5$ right
B. $H S=1 / 2 ; H R ; H T=5$ right; VR; VT $=7$ down
C. $\mathrm{HT}=5$ right; HR; HS = 1/2; VT = 7 down; VR
D. VT = 7 down; VR; HT = 5 right; HR; HS = 1/2

18. The graph of $f(x)$ is shown. The domain and range of $y=f^{-1}(x)$ is:
A. D: $\{x \mid x \geq 1, x \varepsilon R\} ; R:\{y \mid y \geq 0, y \varepsilon R\}$
B. $D:\{x \mid x \geq 0, x \varepsilon R\} ; R:\{y \mid y \geq 1, y \varepsilon R\}$
C. $D:\{x \mid x \leq 1, x \in R\} ; R:\{y \mid y \leq 0, y \varepsilon R\}$
D. $D:\{x \mid x \leq 0, x \varepsilon R\} ; R:\{y \mid y \geq 1, y \varepsilon R\}$

19. The graph of $f(x)$ is shown. The graph of the inverse is a function if:
A. The shape of the inverse is a parabola opening to the left.
B. A vertical line passes through the inverse graph more than once.
C. The domain of the original graph is restricted to $(-\infty, 5]$ or $[5, \infty)$, and then the graph is reflected about the line $y=x$.
D. The original graph is reflected about the line $y=x$.

20. The graph of $f(x)=-(x+3)^{2}+1$ is shown. The inverse function is:
A. $x=-(y+3)^{2}+1$
B. $f^{-1}(x)=\sqrt{-(x-1)}-3$ only.
C. $f^{-1}(x)=-\sqrt{-(x-1)}-3$ only.
D. $f^{-1}(x)=\sqrt{-(x-1)}-3$ or $f^{-1}(x)=-\sqrt{-(x-1)}-3$, but not both together.

21. If $f(x)=2 x-6$, and $f^{-1}(k)=18$, the value of k is:
A. 12
B. 18
C. 30
D. 36
22. The formula to convert degrees Celsius to degrees Fahrenheit is $\mathrm{F}(\mathrm{C})=\frac{9}{5} \mathrm{C}+32$. The graphs of $F(C)$ and $F^{-1}(C)$ intersect at the point:
A. $(-40,-40)$
B. $(-40,32)$
C. $(32,-40)$
D. $(0,32)$
23. The domain of $h(x)=(f-g)(x)$ is:
A. $[-5,3]$
B. $\{x \mid-9 \leq x \leq 3, x \in R\}$;
C. $[-5,6]$
D. $\{x \mid-9 \leq x \leq 6, x \in R\}$;

24. Given the functions $f(x)=x-3$ and $g(x)=-x+1$, the value of $\left(\frac{f}{g}\right)(5)$ is:
A. -2
B. $-\frac{1}{2}$
C. $\frac{1}{2}$
D. 2
25. The domain and range of $h(x)=(f \cdot g)(x)$ is:
A. D: $(0,10]$; R: $[-10,0]$
B. $D:[0,10]$; R: $(-10,0]$
C. D: $(0,10]$; $:(-10,0]$
D. $D:(-3,10] ; R:(-10,0]$

26. Given the functions $f(x)=2 \sqrt{x+4}+1$ and $g(x)=-1$, $(f \cdot g)(x)$ is equivalent to the transformation:
A. $y=-f(x)$
B. $y=f(-x)$
C. $y=f(x)+1$
D. $y=f(x)-1$

27. Given the functions $f(x)=x+3$ and $g(x)=x^{2}+6 x+9$, the function $h(x)=(f \div g)(x)$ and its domain are:
A. $h(x)=\frac{1}{x+3} ; x \neq-3$
B. $h(x)=x+3 ; x \neq-3$
C. $h(x)=\frac{1}{x-3} ; x \neq 3$

D. $h(x)=x-3 ; x \neq 3$
28. A particular cone has a height that is $\sqrt{3}$ times larger than the radius. The volume can be written as the single-variable function:
A. $V(r)=\frac{\sqrt{3}}{3} \pi r^{3}$
B. $\quad V(r)=\sqrt{3} \pi r^{3}$
C. $\quad V(h)=\frac{\sqrt{3}}{3} \pi h^{3}$

D. $\quad V(h)=\sqrt{3} \pi h^{3}$
29. Given the functions $f(x)=x^{2}-3$ and $g(x)=2 x$, the value of $(f \circ f)(2)$ is:
A. -16
B. -8
C. -4
D. -2
30. Given the functions $f(x)=x^{2}-3$ and $g(x)=2 x$, the value of $(f \circ g)(x)$ is:
A. $2 x^{2}-3$
B. $4 x^{2}-3$
C. $2 x^{2}-6$
D. $2 x^{3}-6 x$
31. Given the functions $f(x)=(x+1)^{2}$ and $g(x)=3 x$, the composite function $n(x)=(g \circ f)(x)$ is equivalent to which transformation?
A. $f(x)$ is horizontally stretched by a scale factor of three.
B. $g(x)$ is horizontally stretched by a scale factor of three.
C. $f(x)$ is vertically stretched by a scale factor of three.
D. $g(x)$ is vertically stretched by a scale factor of three.

32. Given the functions $f(x)=\sqrt{x-3}$ and $g(x)=x-5$, the composite function $\mathrm{m}(\mathrm{x})=(\mathrm{f} \circ \mathrm{g})(\mathrm{x})$ and its domain are:
A. $m(x)=\sqrt{x-8} ; D:\{x \mid x \geq 8, x \in R\}$
B. $m(x)=\sqrt{x-8} ; D:\{x \mid x \geq 3, x \in R\}$
C. $m(x)=\sqrt{x-3}-5 ; D:\{x \mid x \geq 8, x \in R\}$

D. $m(x)=\sqrt{x-3}-5 ; D:\{x \mid x \geq 3, x \in R\}$
33. Given the functions $f(x), g(x)$, $m(x)$, and $n(x)$, the composite function $h(x)=[g \circ m \circ n](x)$ and its domain restrictions are:
A. $h(x)=\frac{1}{|x+2|} ; x \neq-2,0$
B. $h(x)=\frac{1}{|x+2|} ; x \neq-2$
c. $h(x)=\frac{1}{|x|(x+2)} ; x \neq-2,0$
D. $h(x)=x+2 ; x \neq-2$
34. Given the functions $f(x), g(x)$, $m(x)$, and $n(x)$, the composite function $h(x)=[f \circ(n+n)](x)$

$$
f(x)=\sqrt{x} \quad g(x)=\frac{1}{x} \quad m(x)=|x| \quad n(x)=x+2
$$ and its domain are:

A. $h(x)=\sqrt{x+2} ; D:[0, \infty)$
B. $h(x)=\sqrt{2 x+4} ; D:[0, \infty)$
C. $h(x)=\sqrt{2 x+4} ; D:(-2, \infty)$
D. $h(x)=\sqrt{2 x+4} ; D:[-2, \infty)$
35. Given $h(x)=x^{2}+4 x+4$, where $h(x)=(f \circ g)(x)$, the functions $f(x)$ and $g(x)$ could be:
A. $f(x)=x+2 ; g(x)=x+2$
B. $f(x)=x-2 ; g(x)=x-2$
C. $f(x)=x+2 ; g(x)=x^{2}$
D. $f(x)=x^{2} ; g(x)=x+2$
36. The functions $f(x)=3 x-2$ and $g(x)=\frac{1}{3} x+\frac{2}{3}$ are inverses if:
A. The graphs of $f(x)$ and $g(x)$ are symmetric about the line $y=0$.
B. $(f \cdot g)(x)=0$
C. $(f \circ g)(x)=1$
D. $(f \circ g)(x)=x$
37. The price of 1 L of gasoline is $\$ 1.05$. On a level road, Darlene's car uses 0.08 L of fuel for every kilometre driven. If the volume of gas used as a function of distance is $V(d)=0.08 \mathrm{~d}$, and the money required for the trip as a function of volume is $M(V)=1.05 \mathrm{~V}$, a function that expresses the money required for the trip as a function of distance is:

A. $M(d)=0.084 d$
B. $M(d)=0.08 d$
C. $M(d)=1.05 d$
D. $M(V)=1.05 \mathrm{~V}$
38. A drinking cup from a water fountain has the shape of an inverted cone. The cup has a height of 8 cm and a radius of 3 cm . The water in the cup also has the shape of an inverted cone, with a radius of r and a height of h.

The volume of the cone can be written with a single variable as:
A. $V(h)=\frac{1}{64} \pi h^{3}$

B. $V(h)=\frac{3}{64} \pi h^{3}$
C. $V(h)=\frac{1}{3} \pi h^{3}$

> Cone Volume
> $V=\frac{1}{3} \pi r^{2} h$
D. $V(h)=\frac{8}{3} \pi h^{3}$

Transformations and Operations Practice Exam - ANSWER KEY Video solutions are in italics.

1. C Basic Transformations, Example 2c
2. C Basic Transformations, Example 4c
3. B Basic Transformations, Example 6 a
4. C Basic Transformations, Example 7b
5. A Basic Transformations, Example 8c
6. A Basic Transformations, Example 9b
7. A Basic Transformations, Example 10b
8. D Basic Transformations, Example 11b
9. D Basic Transformations, Example 13 (c, d)
10. D Basic Transformations, Example 14b
11. D Combined Transformations, Example 5b (iv)
12. A Combined Transformations, Example $7 a$
13. B Combined Transformations, Example 7b
14. D Combined Transformations, Example 8 a
15. D Combined Transformations, Example 9b
16. D Combined Transformations, Example 10
17. B Combined Transformations, Example 11d
18. B Inverses, Example $2 a$
19. C Inverses, Example 3b
20. D Inverses, Example 5b
21. C Inverses, Example 7d
22. A Inverses, Example $8(e, f)$
23. A Function Operations, Example 1b
24. B Function Operations, Example 2d
25. A Function Operations, Example 3c
26. A Function Operations, Example 4b
27. A Function Operations, Example 6c
28. A Function Operations, Example 9d
29. D Function Composition, Example 2c
30. B Function Composition, Example 3 a
31. C Function Composition, Example 4b
32. A Function Composition, Example 5a
33. A Function Composition, Example 6 a
34. B Function Composition, Example 7b
35. D Function Composition, Example 8d
36. D Function Composition, Example 9a
37. A Function Composition, Example 10d
38. B Function Composition, Example 13

Math 30-1 Practice Exam: Tips for Students

- Every question in the practice exam has already been covered in the Math 30-1 workbook. It is recommended that students refrain from looking at the practice exam until they have completed their studies for the unit.
- Do not guess on a practice exam. The practice exam is a self-diagnostic tool that can be used to identify knowledge gaps. Leave the answer blank and study the solution later.
- It is recommended that students use Udemy to access the video solutions for three reasons:

1) The videos can be downloaded faster on Udemy than the math30.ca website.
2) It is quicker to scan through each video on Udemy.
3) The Udemy app is mobile-friendly, but the math30.ca website requires Adobe Flash Player.
