## Math 30-1: Transformations and Operations PRACTICE EXAM

- 1. If the graph of f(x) undergoes the transformation  $y = f(\frac{1}{5}x)$ , a point that exists on the graph of the image is:
  - **A.**  $\left(\frac{1}{5}, 4\right)$
  - **B.** (2, 1)
  - **C.** (-5, 5)
  - **D.** (6, 0)
- 2. If the graph of f(x) undergoes the transformation x = f(y), an invariant point is:
  - **A.** (7, 1)
  - **B.** (3, -3)
  - **C.** (5, 5)
  - **D.** (3, 1)
- If the graph of f(x) undergoes the transformation y 4 = f(x), then the range of the image is:
  - A.  $\{y \mid -6 \le y \le -1, y \in R\}$ B.  $\{y \mid 2 \le y \le 7, y \in R\}$ C. [-6, -1] D. (2, 7)
- 4. If the graph of f(x) is horizontally translated 6 units left, then the corresponding transformation equation and mapping are:

A. Transformation Equation: y = f(x - 6); Mapping:  $(x, y) \rightarrow (x - 6, y)$ B. Transformation Equation: y = f(x - 6); Mapping:  $(x, y) \rightarrow (x + 6, y)$ C. Transformation Equation: y = f(x + 6); Mapping:  $(x, y) \rightarrow (x - 6, y)$ D. Transformation Equation: y = f(x + 6); Mapping:  $(x, y) \rightarrow (x + 6, y)$ 









- 5. If f(x) (dashed line ---) is transformed to the image (solid line –), then the corresponding transformation equation and mapping are:
  - A. Transformation Equation:  $y = f\left(\frac{1}{2}x\right)$ ; Mapping:  $(x, y) \rightarrow (2x, y)$

**B.** Transformation Equation:  $y = f\left(\frac{1}{2}x\right)$ ; Mapping:  $(x, y) \rightarrow \left(\frac{1}{2}x, y\right)$ 

**C.** Transformation Equation: y = f(2x); Mapping:  $(x, y) \rightarrow (2x, y)$ 

**D.** Transformation Equation: y = f(2x);

Mapping:  $(x, y) \rightarrow \left(\frac{1}{2}x, y\right)$ 



- 6. If the graph of  $f(x) = x^2 + 1$  is transformed by g(x) = f(2x), then the function of the image is:
  - A.  $g(x) = 4x^2 + 1$ B.  $g(x) = 2x^2 + 1$ C.  $g(x) = 2x^2 + 2$ D. g(x) = 2x + 1
- 7. If the graph of  $f(x) = x^2 4$  is transformed by g(x) = f(x) 4, then the function of the image is:
  - A.  $g(x) = x^2 8$ B.  $g(x) = x^2$ C.  $g(x) = (x - 4)^2 - 4$ D.  $g(x) = (x + 4)^2 - 4$
- 8. If the graph of  $f(x) = (x + 2)^2$  is horizontally translated so it passes through the point (6, 9), the transformation equation is:
  - **A.** y = f(x 5)
  - **B.** y = f(x 11)
  - **C.** Neither y = f(x 5) nor y = f(x 11).
  - **D.** Both y = f(x 5) and y = f(x 11).



- **9.** Sam sells bread at a farmers' market for \$5.00 per loaf. It costs \$150 to rent a table for one day at the farmers' market, and each loaf of bread costs \$2.00 to produce. The cost (expenses) and revenue functions are:
  - C(n) = 2n + 150 R(n) = 5n

If the cost of renting a table increases by \$50/day, and Sam raises the price of a loaf by 20%, then the new cost and revenue functions are:

- **A.**  $C_2(n) = 2n + 200$  and  $R_2(n) = n$
- **B.**  $C_2(n) = 2.4n + 200$  and  $R_2(n) = 6n$
- **C.**  $C_2(n) = 2(n 50) + 150$  and  $R_2(n) = 5.2n$
- **D.**  $C_2(n) = 2n + 200$  and  $R_2(n) = 6n$
- A basketball player throws a basketball. The path can be modeled with the function:

$$h(d) = -\frac{1}{9}(d - 4)^2 + 4$$

If the player moves so the equation of the shot is  $h(d) = -\frac{1}{9}(d + 1)^2 + 4$ , the horizontal distance of the player from the hoop is:

-3

-2

-1

0

1

2

3

- A. 1 metre
- B. 3 metres
- C. 8 metres
- D. 12 metres
- 11. The transformation y = -3f[-4(x 1)] + 2 is best described (sequentially) as:

-5

-4

**A.** Translations 1 unit left and 2 units up; reflections about both the x- and y-axis; a vertical stretch by a scale factor of 3 and a horizontal stretch by a scale factor of 4.

**B.** Translations 1 unit right and 2 units up; reflections about both the x- and y-axis; a vertical stretch by a scale factor of 3 and a horizontal stretch by a scale factor of 1/4.

**C.** Reflections about both the x- and y-axis; a vertical stretch by a scale factor of 1/3 and a horizontal stretch by a scale factor of 4; and translations 1 unit right and 2 units up.

**D.** A vertical stretch by a scale factor of 3 and a horizontal stretch by a scale factor of 1/4; reflections about both the x- and y-axis; and translations 1 unit right and 2 units up.



 $\Box$ 

6

8

9 d





- **12.** If the graph of f(x) undergoes the transformation  $y = f[\frac{1}{3}(x 1)] + 1$ , the domain and range of the image are:
  - A. D: [-2, 7]; R: [2, 4] B. D: (-2, 7); R: (2, 4) C. D: {x |  $2 \le x \le 4$ , x  $\varepsilon$  R}; R: {y |  $-2 \le y \le 7$ , y  $\varepsilon$  R}
  - **D.** D:  $\{x \mid 2 < x < 4, x \in R\}$ ; R:  $\{y \mid -2 < y < 7, y \in R\}$
- **13.** If the graph of f(x) undergoes the transformation y = f(2x + 6), the horizontal translation is:
  - A. 2 units left.
  - B. 3 units left.
  - C. 6 units left.
  - D. 12 units left.
- 14. If the point (2, 0) exists on the graph of y = f(x), what are the coordinates of the image point after the transformation y = f(-2x + 4) is applied to the graph?
  - **A.** (-3, 0)
  - **B.** (-1, 0)
  - **C.** (0, 0)
  - **D.** (1, 0)
- **15.** The graph of y = f(x) is horizontally stretched by a factor of  $\frac{1}{3}$ , reflected about the x-axis, and translated 2 units left. The corresponding transformation equation and mapping are:

A. Transformation Equation: y = f[-3x + 2];Mapping:  $(x,y) \rightarrow \left(-\frac{1}{3}x - 2, y\right)$ B. Transformation Equation: y = -f[3x + 2];Mapping:  $(x,y) \rightarrow \left(\frac{1}{3}x - 2, -y\right)$ C. Transformation Equation: y = f[-3(x + 2)];Mapping:  $(x,y) \rightarrow \left(-\frac{1}{3}x - 2, y\right)$ D. Transformation Equation: y = -f[3(x + 2)];Mapping:  $(x,y) \rightarrow \left(\frac{1}{3}x - 2, -y\right)$ 





Transformations and Operations Practice Exam

**16.** The general transformation equation y = af[b(x - h)] + k can be expressed as the mapping:

$$(x,y) \rightarrow \left(\frac{1}{b}x + h, ay + k\right)$$

Based on the mapping, one can conclude that:

A. Transformations are axis-independent.

The transformation sequence [VS - VR - VT - HS - HR - HT] is correct because all vertical transformations are grouped together and all horizontal transformations are grouped together.

**B.** Stretches and reflections must universally be applied before translations. The transformation sequence [VS - VR - VT - HS - HR - HT] is incorrect because a vertical translation is applied before a horizontal stretch.

**C.** Stretches and reflections can be applied in either order since the negative sign is included in the a and b parameters. The transformation sequence [VR - VS - VT - HR - HS - HT] is correct.

D. Both A and C are correct.

**17.** The goal of the video game *Space Rocks* is to pilot a spaceship through an asteroid field without colliding with any of the asteroids.

The spaceship acquires two power-ups. The first power-up halves the original width of the spaceship, making it easier to dodge asteroids. The second power-up is a left wing cannon.

What transformation describes the spaceship's new size and position *and* dodges the asteroids?

Original position of ship

Final position of ship

**A.** VR; VT = 7 down; HR; HS = 1/2; HT = 5 right

- **B.** HS = 1/2; HR; HT = 5 right; VR; VT = 7 down
- **C.** HT = 5 right; HR; HS = 1/2; VT = 7 down; VR
- **D.** VT = 7 down; VR; HT = 5 right; HR; HS = 1/2

Legend for Questions 16 and 17.

VS - Vertical Stretch VR - Reflection About the x-axis VT - Vertical Translation HS - Horizontal Stretch HR - Reflection About the y-axis HT - Horizontal Translation





**18.** The graph of f(x) is shown. The domain and range of  $y = f^{-1}(x)$  is:

A. D:  $\{x \mid x \ge 1, x \in R\}$ ; R:  $\{y \mid y \ge 0, y \in R\}$ B. D:  $\{x \mid x \ge 0, x \in R\}$ ; R:  $\{y \mid y \ge 1, y \in R\}$ C. D:  $\{x \mid x \le 1, x \in R\}$ ; R:  $\{y \mid y \le 0, y \in R\}$ D. D:  $\{x \mid x \le 0, x \in R\}$ ; R:  $\{y \mid y \ge 1, y \in R\}$ 

**19.** The graph of f(x) is shown. The graph of the inverse is a function if:

A. The shape of the inverse is a parabola opening to the left.

**B.** A vertical line passes through the inverse graph more than once.

**C.** The domain of the original graph is restricted to  $(-\infty, 5]$  or  $[5, \infty)$ , and then the graph is reflected about the line y = x.

**D.** The original graph is reflected about the line y = x.

**20.** The graph of  $f(x) = -(x + 3)^2 + 1$  is shown. The inverse function is:

A. 
$$x = -(y + 3)^2 + 1$$
  
B.  $f^{-1}(x) = \sqrt{-(x-1)} - 3$  only.  
C.  $f^{-1}(x) = -\sqrt{-(x-1)} - 3$  only.  
D.  $f^{-1}(x) = \sqrt{-(x-1)} - 3$  or  $f^{-1}(x) = -\sqrt{-(x-1)} - 3$ , but not both together.

**21.** If f(x) = 2x - 6, and  $f^{-1}(k) = 18$ , the value of k is:

- **A.** 12
- **B.** 18
- **C.** 30
- **D.** 36

22. The formula to convert degrees Celsius to degrees Fahrenheit is  $F(C) = \frac{9}{5}C + 32$ . The graphs of F(C) and  $F^{-1}(C)$  intersect at the point:

- **A.** (-40, -40)
- **B.** (-40, 32)
- **C.** (32, -40)
- **D.** (0, 32)









ահահահահ

- 23. The domain of h(x) = (f g)(x) is:
  - A. [-5, 3]B.  $\{x \mid -9 \le x \le 3, x \in R\};$ C. [-5, 6]D.  $\{x \mid -9 \le x \le 6, x \in R\};$
- **24.** Given the functions f(x) = x 3 and g(x) = -x + 1, the value of  $\left(\frac{f}{g}\right)(5)$  is:
  - A. -2 B.  $-\frac{1}{2}$ C.  $\frac{1}{2}$
  - **D.** 2
- **25.** The domain and range of  $h(x) = (f \cdot g)(x)$  is:
  - A. D: (0, 10]; R: [-10, 0]
    B. D: [0, 10]; R: (-10, 0]
  - **C.** D: (0, 10]; R: (-10, 0]
  - **D.** D: (-3, 10]; R: (-10, 0]
- **26.** Given the functions  $f(x) = 2\sqrt{x+4} + 1$  and g(x) = -1,  $(f \cdot g)(x)$  is equivalent to the transformation:
  - **A.** y = -f(x)
  - **B.** y = f(-x)
  - **C.** y = f(x) + 1
  - **D.** y = f(x) 1
- 27. Given the functions f(x) = x + 3 and  $g(x) = x^2 + 6x + 9$ , the function  $h(x) = (f \div g)(x)$  and its domain are:
  - A.  $h(x) = \frac{1}{x+3}; x \neq -3$ B.  $h(x) = x+3; x \neq -3$ C.  $h(x) = \frac{1}{x-3}; x \neq 3$ D.  $h(x) = x-3; x \neq 3$







**28.** A particular cone has a height that is  $\sqrt{3}$  times larger than the radius. The volume can be written as the single-variable function:



- **29.** Given the functions  $f(x) = x^2 3$  and g(x) = 2x, the value of  $(f \circ f)(2)$  is:
  - **A.** -16
  - **B.** -8
  - **C.** -4
  - **D.** -2
- **30.** Given the functions  $f(x) = x^2 3$  and g(x) = 2x, the value of  $(f \circ g)(x)$  is:
  - **A.** 2x<sup>2</sup> 3
  - **B.** 4x<sup>2</sup> 3
  - **C.** 2x<sup>2</sup> 6
  - **D.** 2x<sup>3</sup> 6x
- **31.** Given the functions  $f(x) = (x + 1)^2$  and g(x) = 3x, the composite function  $n(x) = (g \circ f)(x)$  is equivalent to which transformation?
  - A. f(x) is horizontally stretched by a scale factor of three.
  - **B.** g(x) is horizontally stretched by a scale factor of three.
  - C. f(x) is vertically stretched by a scale factor of three.
  - **D.** g(x) is vertically stretched by a scale factor of three.



- 32. Given the functions  $f(x) = \sqrt{x-3}$  and g(x) = x-5, the composite function  $m(x) = (f \circ g)(x)$  and its domain are:
  - A.  $m(x) = \sqrt{x-8}$ ;  $D: \{x \mid x \ge 8, x \in R\}$ B.  $m(x) = \sqrt{x-8}$ ;  $D: \{x \mid x \ge 3, x \in R\}$ C.  $m(x) = \sqrt{x-3} - 5$ ;  $D: \{x \mid x \ge 8, x \in R\}$ D.  $m(x) = \sqrt{x-3} - 5$ ;  $D: \{x \mid x \ge 3, x \in R\}$
- 33. Given the functions f(x), g(x), m(x), and n(x), the composite function h(x) = [g o m o n](x) and its domain restrictions are:

A. 
$$h(x) = \frac{1}{|x+2|}; x \neq -2, 0$$
  
B.  $h(x) = \frac{1}{|x+2|}; x \neq -2$   
C.  $h(x) = \frac{1}{|x|(x+2)}; x \neq -2, 0$ 

**D.**  $h(x) = x + 2; x \neq -2$ 

A.  $h(x) = \sqrt{x+2}; D : [0, \infty)$ B.  $h(x) = \sqrt{2x+4}; D : [0, \infty)$ C.  $h(x) = \sqrt{2x+4}; D : (-2, \infty)$ 

**D.** 
$$h(x) = \sqrt{2x+4}; D: [-2, \infty)$$



$$f(x) = \sqrt{x}$$
  $g(x) = \frac{1}{x}$   $m(x) = |x|$   $n(x) = x + 2$ 

$$f(x) = \sqrt{x}$$
  $g(x) = \frac{1}{x}$   $m(x) = |x|$   $n(x) = x + 2$ 

## **35.** Given $h(x) = x^2 + 4x + 4$ , where $h(x) = (f \circ g)(x)$ , the functions f(x) and g(x) could be:

A. f(x) = x + 2; g(x) = x + 2B. f(x) = x - 2; g(x) = x - 2C. f(x) = x + 2;  $g(x) = x^2$ D.  $f(x) = x^2$ ; g(x) = x + 2

**36.** The functions f(x) = 3x - 2 and  $g(x) = \frac{1}{3}x + \frac{2}{3}$  are inverses if:

- A. The graphs of f(x) and g(x) are symmetric about the line y = 0.
- **B.**  $(f \cdot g)(x) = 0$
- **C.**  $(f \circ g)(x) = 1$
- **D.**  $(f \circ g)(x) = x$
- **37.** The price of 1 L of gasoline is \$1.05. On a level road, Darlene's car uses 0.08 L of fuel for every kilometre driven. If the volume of gas used as a function of distance is V(d) = 0.08d, and the money required for the trip as a function of volume is M(V) = 1.05V, a function that expresses the money required for the trip as a function of distance is:
  - **A.** M(d) = 0.084d
  - **B.** M(d) = 0.08d
  - **C.** M(d) = 1.05d
  - **D.** M(V) = 1.05V
- **38.** A drinking cup from a water fountain has the shape of an inverted cone. The cup has a height of 8 cm and a radius of 3 cm. The water in the cup also has the shape of an inverted cone, with a radius of r and a height of h.

The volume of the cone can be written with a single variable as:







## Transformations and Operations Practice Exam - ANSWER KEY Video solutions are in italics.

| 1. C Basic Transformations, Example 2c          | 21. C Inverses, Example 7d              |
|-------------------------------------------------|-----------------------------------------|
| 2. C Basic Transformations, Example 4c          | 22. A Inverses, Example 8 (e,f)         |
| 3. B Basic Transformations, Example 6a          | 23. A Function Operations, Example 1b   |
| 4. C Basic Transformations, Example 7b          | 24. B Function Operations, Example 2d   |
| 5. A Basic Transformations, Example 8c          | 25. A Function Operations, Example 3c   |
| 6. A Basic Transformations, Example 9b          | 26. A Function Operations, Example 4b   |
| 7. A Basic Transformations, Example 10b         | 27. A Function Operations, Example 6c   |
| 8. D Basic Transformations, Example 11b         | 28. A Function Operations, Example 9d   |
| 9. D Basic Transformations, Example 13 (c, d)   | 29. D Function Composition, Example 2c  |
| 10. D Basic Transformations, Example 14b        | 30. B Function Composition, Example 3a  |
| 11. D Combined Transformations, Example 5b (iv) | 31. C Function Composition, Example 4b  |
| 12. A Combined Transformations, Example 7a      | 32. A Function Composition, Example 5a  |
| 13. B Combined Transformations, Example 7b      | 33. A Function Composition, Example 6a  |
| 14. D Combined Transformations, Example 8a      | 34. B Function Composition, Example 7b  |
| 15. D Combined Transformations, Example 9b      | 35. D Function Composition, Example 8d  |
| 16. D Combined Transformations, Example 10      | 36. D Function Composition, Example 9a  |
| 17. B Combined Transformations, Example 11d     | 37. A Function Composition, Example 10d |
| 18. B Inverses, Example 2a                      | 38. B Function Composition, Example 13  |
| 19. C Inverses, Example 3b                      |                                         |

20. D Inverses, Example 5b

## Math 30-1 Practice Exam: Tips for Students

• Every question in the practice exam has already been covered in the Math 30-1 workbook. It is recommended that students refrain from looking at the practice exam until they have completed their studies for the unit.

• Do not guess on a practice exam. The practice exam is a self-diagnostic tool that can be used to identify knowledge gaps. Leave the answer blank and study the solution later.

• It is recommended that students use Udemy to access the video solutions for three reasons:

1) The videos can be downloaded faster on Udemy than the math30.ca website.

2) It is quicker to scan through each video on Udemy.

3) The Udemy app is mobile-friendly, but the math30.ca website requires Adobe Flash Player.