

Example 1

Introduction to Polynomial Functions.

Defining Polynomials

a) Given the general form of a polynomial function:

 $P(x) = a_n x^n + a_{n-1} x^{n-1} + a_{n-2} x^{n-2} + \dots + a_1 x^1 + a_0$ 

the leading coefficient is \_\_\_\_\_.

the degree of the polynomial is \_\_\_\_\_.

the constant term of the polynomial is \_\_\_\_\_.

| For each polynomial function given below, |
|-------------------------------------------|
| state the leading coefficient, degree,    |
| and constant term.                        |

| i) f(x) = 3x - 2             |         |                |  |
|------------------------------|---------|----------------|--|
| leading coefficient:         | degree: | constant term: |  |
| ii) $y = x^3 + 2x^2 - x - 1$ |         |                |  |
| leading coefficient:         | degree: | constant term: |  |
| iii) P(x) = 5                |         |                |  |
| leading coefficient:         | degree: | constant term: |  |

b) Determine which expressions are polynomials. Explain your reasoning.

| i) x <sup>5</sup> + 3 | ii) 5 <sup>x</sup> + 3 | iii) 3             |
|-----------------------|------------------------|--------------------|
| polynomial: yes no    | polynomial: yes no     | polynomial: yes no |

iv)  $4x^2 - 5x^{\frac{1}{2}} - 1$ v)  $x^2 + \frac{1}{3}x - 4$ vi) |x|polynomial: yes nopolynomial: yes nopolynomial: yes no

| vii) 5 <del>\/x</del> - 1 | viii) $\sqrt{7}x + 2$ | ix) $\frac{1}{x+3}$ |
|---------------------------|-----------------------|---------------------|
| polynomial: yes no        | polynomial: yes no    | polynomial: yes no  |



Example 2

End Behaviour of Polynomial Functions.

Even-Degree Polynomials

a) The equations and graphs of several even-degree polynomials are shown below. Study these graphs and generalize the end behaviour of even-degree polynomials.



State the End Behaviour of even-degree polynomials:

| Sign of<br>Leading Coefficient | End Behaviour |  |  |
|--------------------------------|---------------|--|--|
| Positive                       |               |  |  |
| Negative                       |               |  |  |



b) The equations and graphs of several odd-degree polynomials are shown below. Study these graphs and generalize the end behaviour of odd-degree polynomials.

Odd-Degree Polynomials



State the End Behaviour of odd-degree polynomials:

| Sign of<br>Leading Coefficient | End Behaviour |
|--------------------------------|---------------|
| Positive                       |               |
| Negative                       |               |



Example 3

Zeros, Roots, and x-intercepts of a Polynomial Function.

Zeros, roots, and x-intercepts

a) Define "zero of a polynomial function". Determine if each value is a zero of  $P(x) = x^2 - 4x - 5$ . i) -1 ii) 3

b) Find the zeros of  $P(x) = x^2 - 4x - 5$  by solving for the roots of the related equation, P(x) = 0.

c) Use a graphing calculator to graph  $P(x) = x^2 - 4x - 5$ . How are the zeros of the polynomial related to the x-intercepts of the graph?



d) How do you know when to describe solutions as zeros, roots, or x-intercepts?



| Example 11                         | Use a graphing calculator to graph each pol<br>function. Find window settings that clearly<br>important features of each graph ( <i>x</i> -interce<br><i>y</i> -intercept, and end behaviour). | show the      | Graphing<br>Polynomials<br>with Technology |
|------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|--------------------------------------------|
| ) P(x) = x <sup>2</sup> - 2x - 168 | Dra                                                                                                                                                                                            | aw the graph. |                                            |

b)  $P(x) = x^3 + 7x^2 - 44x$ 

a)  $P(x) = x^2 - x^2 -$ 

Draw the graph.

c)  $P(x) = x^3 - 16x^2 - 144x + 1152$ 

Draw the graph.

www.math30.ca