Math 30-1

Polynomial, Radical, and Rational Functions
LESSON ONE - Polynomial Functions Lesson Notes

Example 1

Introduction to Polynomial Functions.

Defining
Polynomials

a) Given the general form of a polynomial function:
$P(x)=a_{n} x^{n}+a_{n-1} x^{n-1}+a_{n-2} x^{n-2}+\ldots+a_{1} x^{1}+a_{0}$
the leading coefficient is \qquad .
the degree of the polynomial is \qquad .
the constant term of the polynomial is \qquad .

For each polynomial function given below, state the leading coefficient, degree, and constant term.
i) $f(x)=3 x-2$
leading coefficient: \qquad degree: \qquad constant term: \qquad
ii) $y=x^{3}+2 x^{2}-x-1$
leading coefficient: \qquad degree: \qquad constant term: \qquad
iii) $P(x)=5$
leading coefficient: \qquad
\qquad constant term: \qquad
b) Determine which expressions are polynomials. Explain your reasoning.
i) $x^{5}+3$
ii) $5^{x}+3$
polynomial: yes no
polynomial: yes no
polynomial: yes no
iv) $4 x^{2}-5 x^{\frac{1}{2}}-1$
polynomial: yes no
v) $x^{2}+\frac{1}{3} x-4$
polynomial: yes no
viii) $\sqrt{7} x+2$
polynomial: yes no
vi) $|x|$
polynomial: yes no
ix) $\frac{1}{x+3}$
polynomial: yes no

Polynomial, Radical, and Rational Functions LESSON ONE - Polynomial Functions Lesson Notes

Example 2
End Behaviour of Polynomial Functions.
a) The equations and graphs of several even-degree polynomials are shown below. Study these graphs and generalize the end behaviour of even-degree polynomials.

State the End Behaviour of even-degree polynomials:

Sign of	
Leading Coefficient	End Behaviour
Positive	
Negative	

b) The equations and graphs of several odd-degree polynomials are shown below. Study these graphs and generalize the end behaviour of odd-degree polynomials.

$\mathrm{f}(\mathrm{x})=\mathrm{x}$
linear
v

$f(x)=x^{3}-2 x^{2}-2 x+6$ cubic

$f(x)=-x+4$
linear

$f(x)=-x^{3}+7 x$ cubic

$$
f(x)=x^{3}
$$ cubic

$f(x)=x^{5}$
quintic

$f(x)=-x^{3}$
cubic

$f(x)=-x^{5}-4 x^{4}+40 x^{3}+160 x^{2}-144 x-576$ quintic

State the End Behaviour of odd-degree polynomials:

Sign of	
Leading Coefficient	End Behaviour
Positive	
Negative	

Polynomial, Radical, and Rational Functions LESSON ONE - Polynomial Functions Lesson Notes

Example 3
Zeros, Roots, and x-intercepts of a Polynomial Function.

Zeros, roots, and x-intercepts
a) Define "zero of a polynomial function". Determine if each value is a zero of $P(x)=x^{2}-4 x-5$.
i) -1
ii) 3
b) Find the zeros of $P(x)=x^{2}-4 x-5$ by solving for the roots of the related equation, $P(x)=0$.
c) Use a graphing calculator to graph $P(x)=x^{2}-4 x-5$. How are the zeros of the polynomial related to the x-intercepts of the graph?

d) How do you know when to describe solutions as zeros, roots, or x-intercepts?

Polynomial, Radical, and Rational Functions LESSON ONE - Polynomial Functions Lesson Notes

Example 11

Use a graphing calculator to graph each polynomial function. Find window settings that clearly show the important features of each graph (x-intercepts, y-intercept, and end behaviour).
a) $P(x)=x^{2}-2 x-168$
b) $P(x)=x^{3}+7 x^{2}-44 x$
c) $P(x)=x^{3}-16 x^{2}-144 x+1152$

Draw the graph.

Draw the graph.

Draw the graph.

